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Abstract Beta regression models have been recom-

mended for continuous bounded outcome scores that are

often collected in clinical studies. Implementing beta

regression in NONMEM presents difficulties since it does

not provide gamma functions required by the beta distri-

bution density function. The objective of the study was to

implement mixed-effects beta regression models in NON-

MEM using Nemes’ approximation to the gamma function

and to evaluate the performance of the NONMEM imple-

mentation of mixed-effects beta regression in comparison

to the commonly used SAS approach. Monte Carlo simu-

lations were conducted to simulate continuous outcomes

within an interval of (0, 70) based on a beta regression

model in the context of Alzheimer’s disease. Six samples

per subject over a 3 years period were simulated at 0, 0.5,

1, 1.5, 2, and 3 years. One thousand trials were simulated

and each trial had 250 subjects. The simulation–reestima-

tion exercise indicated that the NONMEM implementation

using Laplace and Nemes’ approximations provided only

slightly higher bias and relative RMSE (RRMSE) com-

pared to the commonly used SAS approach with adaptive

Gaussian quadrature and built-in gamma functions, i.e., the

difference in bias and RRMSE for fixed-effect parameters,

random effects on intercept, and the precision parameter

were \1–3 %, while the difference in the random effects

on the slope was \3–7 % under the studied simulation

conditions. The mixed-effect beta regression model

described the disease progression for the cognitive com-

ponent of the Alzheimer’s disease assessment scale from

the Alzheimer’s Disease Neuroimaging Initiative study. In

conclusion, with Nemes’ approximation of the gamma

function, NONMEM provided comparable estimates to

those from SAS for both fixed and random-effect param-

eters. In addition, the NONMEM run time for the mixed

beta regression models appeared to be much shorter com-

pared to SAS, i.e., 1–2 versus 20–40 s for the model and

data used in the manuscript.

Introduction

Continuous bounded outcome scores are measurements

taking values on a finite interval, and often used in clinical

studies. Examples of bounded outcome data are the cog-

nitive component of the Alzheimer’s disease (AD)

assessment scale (ADAS-cog), a key measure of cognition

in AD patients taking values from 0 to 70 inclusive [1], and

the Disability Assessment for Dementia (DAD), a measure

of activities of daily living (0–100 inclusive) [2]. Since

these types of data are often bounded within a certain

range, the expectation must be nonlinear due to the ceiling/
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floor effects, and the error distribution must be heteros-

cedastic since the variance must approach zero as their

mean approaches either boundary score [1]. Therefore,

regular regression models, such as normal linear or non-

linear regression models, are not suitable for these scales

[1, 2].

Since bounded outcome data are restricted to a finite

interval, they can be viewed as proportion or percentage-

like data after being normalized by the range of the scale

(e.g., 70 for ADAS-cog). One of the challenges associated

with this type of data is that its distribution can vary from

unimodal to J-, L-, or U-shaped. Thus, standard statistical

approaches such as normalizing transformations may not

work well in these cases [3]. Beta regression models, an

extension of the generalized linear model, are recom-

mended for such data due to the flexibility of the beta

distribution and its ability to characterize dependent vari-

ables with various skewed and bimodal distributions[3–6].

Beta regression models, including mixed-effects beta

regression, have been successfully implemented using

WinBugs [7, 8] and Proc NLMIXED in SAS [3, 6, 9].

However, implementing beta regression in NONMEM

presents difficulties, because NONMEM does not provide

gamma functions required by the beta distribution density

function. Values of the gamma function can be computed

numerically by asymptotic approximations. Based on

Stirling-De Moivre asymptotic series approximation,

Nemes developed a new approximation to the gamma

function using a series transformation [10]. This new

approximation was shown to be superior to the other

existing approximation methods (e.g., Stirling, Laplace and

Ramanujan approximations) for the gamma function [10].

The objective of this research was to implement mixed-

effects beta regression models in NONMEM. In addition,

in mixed-effects beta regression, the likelihood is com-

posed of gamma functions that contain subject-specific

random effects. We evaluated the sufficiency of the

NONMEM implementation of mixed-effects beta regres-

sion in comparison to widely used SAS approach. We used

Nemes’ approximation to the gamma function to construct

the likelihood of the beta regression. A simulation-reesti-

mation exercise was performed to evaluate the perfor-

mance of NONMEM (version 7.1) for mixed effects beta

regression models.

Methods

Beta regression

The mixed-effects beta regression assumes that conditional

on the random effects, the response variable follows a beta

distribution as denoted by:

yijjgi; h; s� beta ðlijs; ð1� lijÞsÞ ð1Þ

where yij is the response variable (0 \ yij \ 1) for the ith

subject (i = 1…m) at the jth time (j = 1…nj), lij is the

conditional expectation (mean) of the response process

(0 \ lij \ 1), gi’s are the random effects following a

multivariate normal distribution (gi * N(0, R)), h’s are the

fixed effects (parameter coefficients), and s is the precision

parameter (s[ 0). In addition, conditional on gi, h, and s,

yij’s are independent and have a beta density as follows:

f ðyij;h;gi;sÞ¼
CðsÞ

CðlijsÞCðð1�lijÞsÞ
y
ðlijs�1Þ
ij ð1�yijÞð1�lijÞs�1

ð2Þ

Using a logit link function, a beta regression model can

be formed as:

log
lij

1� lij

 !
¼ gðh; gi; xijÞ ð3Þ

g(h, gi,xij) is some function of the regression covariates, the

fixed, and random effects. Other link functions, including

probit and complementary log–log, can be used as well.

Selection of link functions in data analysis can be assisted

by statistical tests [11, 12]. Interpretation of the parameters

of the link functions is not always straightforward. One

solution is to evaluate the covariates (e.g., slope) on the

probability scale through rate of change functions [8, 13].

In this manuscript, we assume that the precision parameter,

s, is constant over all observations. However, s may be

modeled as a function of covariates using the log link

function to assure a positive value for this parameter [6].

Nemes’ approximation to the gamma function

Nemes has shown that the closed form approximation to

the gamma function can be expressed as follows [10, 14]:

CðxÞ�
ffiffiffiffiffiffi
2p
x

r
x

e

� �x

1þ 1

15x2

� �5
4
x

ð4Þ

Simulations

The simulation data were generated in the context of dis-

ease progression in patients with AD. The hypothetical AD

response (R(t)) is assumed to be Alzheimer’s disease

assessment scale-cognitive subscale 11 (ADAS-cog/11)

Scores, which has scores between 0 and 70. We assume

that the normalized response scores (i.e., R(t)/70) follow a

beta distribution as shown in Eq. 1. Conditional on the

random effects, the expected response (lij) for the ith

subject at the jth time point is a linear function of time on

the logit scale [7, 8]:
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log
lij

1� lij

 !
¼ h0 þ g0i þ ðh1 þ g1iÞ � tij ð5Þ

where h0 is the intercept that characterizes baseline disease

state, and h1 characterizes the rate of disease progression.

The random effects of intercept and slope (g0i and g1i,

respectively) are assumed to follow a multivariate normal

distribution with mean equal to the null vector and

variance–covariance matrix:

x00 ¼ 0:42 x01 ¼ 0

x01 ¼ 0 x11 ¼ 0:32

� �
ð6Þ

Monte Carlo simulations were conducted based on the

beta regression model in R 2.14.0. The R code for the

simulation can be made available upon request. Six

samples per subject over a 3 years period were simulated

at 0, 0.5, 1, 1.5, 2, and 3 years. One thousand trials were

simulated, and each trial contained 250 subjects. This

sample size is relevant to a Phase 2 clinical study for AD.

The intercept and slope were: h0 = 1and h1 = 0.3,

respectively. The precision parameter, s, was set to 3, 5,

and 7 to generate approximately 50, 40, and 30 % data near

the boundaries (Supplementary Fig. 1). The simulations

were inspired by the example given in the Application

section of this manuscript. The parameters were tweaked to

move the data closer to the boundaries. It should be noted

that the conditional likelihood cannot be computed at the

boundaries because the beta density is not defined for these

values. As a result of the numeric rounding, a very small

portion of the simulated data (i.e., 0.19 % for s = 3;

0.05 % for s = 5; and 0.02 % for s = 7) were on the

boundaries of the scale. Since the percent of data points at

the boundaries was negligible, we analyzed the simulated

data after excluding the data on the boundaries.

The performance of beta regression in NONMEM was

evaluated by re-estimating the model parameters for each

simulated dataset and by comparing bias (%) and the rel-

ative root mean squared error (RRMSE, %) as follows:

BIAS ¼ 1

N

XN

n¼1

ð/̂n � /Þ
/

� 100 ð7Þ

RRMSE ¼ 1

N

XN

n¼1

ð/̂n � /Þ
/

" #2
0
@

1
A

1=2

� 100 ð8Þ

where N is the total number of simulated datasets, / is the

true value of the parameters (i.e., h or x) in Eq. 2 and /̂n is

the estimate for the nth simulated dataset.

The simulated data were analyzed with the beta

regression using both NONMEM and SAS. The imple-

mentation of the beta regression model in NONMEM used

Nemes’ approximation to gamma function and Laplace

approximation of the likelihood function (hereafter NON-

MEM), while adaptive Gaussian quadrature of PROC

NLMIXED was used to numerically solve the integrals

over the random effects to compute the marginal likelihood

(hereafter SAS). Because implementation of beta regres-

sion in SAS with adaptive Gaussian quadrature has been

widely accepted in the literature [3, 6, 9], comparison of

the performance of the NONMEM implementation using

Laplace approximation with that of the SAS could be used

to gauge the proposed NONMEM method in this manu-

script. We also estimated the simulated data using SAS

with Laplace approximation (hereafter SAS-Laplace) to

understand the sources of difference in the performance of

NONMEM and SAS by comparing Nemes’ approximation

to the built-in gamma functions in SAS. The number of

quadrature points was set to 10 and 1 for SAS and SAS-

Laplace, respectively. The quasi-Newton optimization was

used for SAS, while double-dogleg optimization method

was used for SAS-Laplace.

Application of beta regression implemented

in NONMEM

Study details

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.ucla.edu). The ADNI was

launched in 2003 by the National Institute on Aging (NIA),

the National Institute of Biomedical Imaging and Bioen-

gineering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5 years public–private

partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is

Michael W. Weiner, MD, VA Medical Center and Uni-

versity of California, San Francisco. ADNI is the result of

efforts of many co-investigators from a broad range of

academic institutions and private corporations, and subjects

have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 sub-

jects but ADNI has been followed by ADNI-GO and

ADNI-2. To date these three protocols have recruited over

1,500 adults, ages 55–90, to participate in the research,
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consisting of cognitively normal older individuals, people

with early or late MCI, and people with early AD. The

follow up duration of each group is specified in the pro-

tocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date infor-

mation, see www.adni-info.org. The dataset for the current

analysis consisted of 191 AD subjects. All AD subjects had

clinical/neuropsychological assessments and 1.5T MRI

measurements, and were assessed at 0, 6, 12, and

24 months.

We demonstrate the application of a mixed-effects beta

regression model in NONMEM for modeling the deterio-

ration of cognitive function (measured by ADAS-cog) in

patients with AD. ADAS-cog scores patients on an

aggregate of 11 components (i.e.,measures deterioration of

memory, language, praxis, attention and other cognitive

abilities in AD). A recent large meta-analysis has modeled

ADAS-cog data using beta regression implemented in

WinBugs [8]. The purpose of the current analysis is to

demonstrate the implementation of beta regression in

NONMEM. It is worth mentioning that various structural

models such as linear and logistic models have been

applied to this type of data [15–17]. In this analysis, the

simple logistic structural model was used in the simulation-

reestimation exercise (Eq. 5), which assumed linear pro-

gression on the logit scale. The NONMEM code for the

application is presented in the Appendix.

Goodness-of-fit and visual predictive check

Diagnostics of goodness of fit included plots of residuals

against the predicted score and time and the observed

versus predicted values. For beta regression, raw response

residuals are not suitable for model diagnostics due to the

heteroscedasticity associated with the data and the model.

Pearson’s residuals (also called standardized ordinary

residuals) were first proposed to diagnose the beta regres-

sion models [5]. In addition, deviance residuals and stan-

dardized weighted residuals were also proposed to measure

goodness-of-fit of the beta regression model [4, 5, 18]. We

used standardized ordinary residuals to diagnose the beta

regression model for the ADNI ADAS-cog data. The def-

inition of standardized ordinary residuals was the following

[5]:

rij ¼
yij � lijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðyijÞ
p ð9Þ

where li and varðyijÞ ¼
lijð1�lijÞ

1þs were the estimated mean

and variance of the response scores, respectively.

The percentile VPC [19] was used to assess the model.

The median, and 5th and 95th percentiles of the observed

data were computed, and then the median and 90 %

prediction intervals of these quantities were computed

based on 1000 simulations and compared to the observed

percentiles. The uncertainties of the parameter estimates

were not used in the simulations for the VPC. The

unscheduled sparse samples at 1.5 and 3 years were binned

with samples at 1 and 2 years, respectively. It is worth

mentioning that theoretically, simulations from beta dis-

tribution will not generate 0 and 1 (i.e., boundary values).

However, the simulated values that are very close to 0 or 1

will be automatically rounded to 0 and 1 by the software.

Results and discussion

The beta regression model implemented in NONMEM had

no difficulties with model convergence. No unsuccessful

terminations were observed during the simulation-reesti-

mation exercise. The run time on an Intel� CoreTM i5 CPU

(M520 @ 2.4 GHz) for the reestimation of the simulated

datasets (e.g., a sample size of 250 per trial) was 1–2 s per

model run for NONMEM, 20–40 s for SAS, and 10–20 s

for SAS-Laplace.

Table 1 shows the bias and RRMSE for the parameter

estimates of the mixed-effects beta regression model for

NONMEM, SAS, and SAS-Laplace for different simulation

scenarios (different skewness of the data when s = 3, 5, and

7). Overall, except for the random effects of the slope, the

bias for the other model parameters was small (\5 %) for all

the three estimation methods. However, it appears that there

were some difficulties in estimating the random effect of the

slope for all the estimation methods. The bias of the random

effects of the slope for SAS ranged from -2 to -9 % while

the bias of the NONMEM results ranged from approximately

-6 to -16 %. In general, the bias and RRMSE for the

parameters of beta regression decreased with less skewed

data for all the three investigated estimation approaches.

When the data is highly skewed (i.e. s = 3 and 50 % of data

near the edge), the bias of the random effect of the slope for

SAS and NONMEM was -9 and -16 %, respectively. The

bias of the random effects on slope was reduced to -2 and

-6 % for SAS and NONMEM, respectively as s increased

to 7 (30 % data near the edge). Overall, the RRMSE of the

parameter estimates of the beta regression using SAS was

less than 15 %, while the RRMSE using NONMEM was less

than 20 %. Therefore, compared to the widely used SAS

implementation of beta regression (i.e., adaptive Gaussian

quadrature and built-in gamma function), the NONMEM

implementation using Laplace and Nemes’ approximations

provided similar performance with only 3 to 7 % higher bias

and RRMSE for the random effect of slope under the current

simulation conditions. The differences in bias and RRMSE

among different estimation methods became less noticeable

when the data were less skewed.
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Laplace approximation was also attempted with SAS to

identify which approximation (Laplace or Nemes’

approximation) contributed to the higher bias and RRMSE

for the NONMEM implementation compared to the SAS

approach. SAS-Laplace generally had slightly higher bias

and RRMSE than SAS, but lower or comparable bias and

RRMSE compared to NONMEM. When data is less

skewed (i.e., s = 7), the difference in bias and RRMSE

between NONMEM and SAS may mainly be a result of

difference in Laplace and adaptive Gaussian quadrature

approximations because the bias and RRMSE of NON-

MEM was similar to that of SAS-Laplace in this simulation

scenario. However, when s = 3, both Laplace and Nemes’

approximations may contribute to the difference between

SAS and NONMEM as the bias and RRMSE of SAS-

Laplace is in the middle between the values for NONMEM

and SAS.

The run time of the beta regression model on the ADNI

dataset was 2.3 s. The parameter estimates for the beta

regression model of the ADAS-cog data obtained from

SAS and NONMEM are listed in Table 2. The parameter

estimates based SAS and NONMEM are virtually the

same. This is not surprising since very small amount of the

ADAS-cog scores of the ADNI AD patients were near the

boundaries (Supplementary Fig. 2). Diagnostic plots based

on the NONMEM model for residuals (Fig. 1) show that

there is no obvious pattern in the individual standardized

ordinary residuals versus time and population predictions.

The plots of the observed versus both population and

individual predicted ADAS-cog (Fig. 1) shows that the

data are generally distributed around the line of identity,

indicating an overall reasonable model fitting of ADAS-

cog scores. The percentile VPC plot (Fig. 2) suggests that

overall, the beta regression disease progression model

described the longitudinal progression of ADAS-cog well,

as the predicted percentiles (the 5th, 50th, and 95th) closely

matched the corresponding observed percentiles. It should

be noted that the median predicted curve is slightly above

the observed median. This may be probably due to the

influence of the missing data (30 % missing data at year 2

in the current dataset) on the observed data because

patients with slower disease progression tended to stay in

the study, while patients with worsening progression ten-

ded to drop out. Therefore, the observed data at later times

(i.e., 1 and 2 years) are probably from the subjects with less

severe disease status (i.e., lower ADAS-cog scores) owing

to the selection bias caused by the missing data. The

mixed-effects beta regression model assumed missing at

random to account for the missing data. Therefore, the

prediction based on the beta regression model represents an

ideal situation where no dropout occurred inspite of disease

worsening. This may explain the mismatch between the

predicted and observed median curves.

The main focus of the manuscript is the continuous

bounded outcome scores when data are not on the bound-

aries. In presence of data on the boundaries, a rescaling

Table 1 Model performance of the beta regression model using SAS and NONMEM

Parameter s = 3 s = 5 s = 7

Bias RRMSE Bias RRMSE Bias RRMSE

NONMEM (Laplace approximation/Nemes’ approximation to gamma function)

Intercept (b0) 0.13 5.56 0.09 4.53 -0.13 4.32

Slope (b1) -4.26 11.64 -2.15 10.01 -1.27 9.56

SD of IIV on intercept (b0) -2.89 12.39 -2.35 11.16 -1.50 9.89

SD of IIV on slope (b1) -16.20 20.15 -8.71 13.51 -6.01 10.92

Precision parameter (s) -3.59 5.65 -1.70 4.58 -1.04 4.49

SAS (adaptive Gaussian quadrature)

Intercept (b0) 0.32 5.44 0.32 4.49 0.03 4.27

Slope (b1) -0.39 4.39 -0.04 4.29 0.13 4.38

SD of IIV on intercept (b0) -0.22 11.81 -0.34 10.75 0.29 9.62

SD of IIV on slope (b1) -9.39 14.17 -4.05 10.27 -2.23 9.04

Precision parameter (s) -0.39 4.39 -0.04 4.29 0.13 4.38

SAS (Laplace approximation)

Intercept (b0) 0.05 5.40 -0.07 4.47 -0.54 4.36

Slope (b1) -2.91 10.40 -1.70 9.58 -1.28 9.44

SD of IIV on intercept (b0) -2.13 11.87 -2.60 11.02 -2.51 10.04

SD of IIV on slope (b1) -12.63 16.33 -7.39 11.97 -6.02 10.79

Precision parameter (s) -1.05 4.32 -1.38 4.46 -2.73 5.62

RRMSE relative root mean square error
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method proposed by Verkuilen and Smithson may be

applied to the data before analysis using beta regression [4,

6, 9]. In addition, zero- and one-inflated beta regression

[20, 21] and transformation approaches [22, 23] have been

proposed to analyze continuous bounded outcome scores in

presence of boundary data. For longitudinal, discrete

bounded outcome data, random-effects coarsened models

and ordinal probit models have been considered sensible

approaches [24, 25]. For the current simulation data, we

also analyzed the simulated data using beta regression after

Table 2 Parameter estimates of the beta regression model implemented in NONMEM and SAS for ADAS-cog progression based on the ADNI

dataset

Parameter SAS NONMEM

Estimate 95 % CI Estimate 95 % CIa

Intercept (b0) -1.07 -1.01 -1.13 -1.06 -0.99 -1.13

Slope (b1) 0.311 0.258 0.364 0.32 0.270 0.372

SD of IIV on intercept (b0) 0.41 0.36 0.45 0.43 0.39 0.48

SD of IIV on slope (b1) 0.278 0.243 0.313 0.28 0.259 0.309

Precision parameter (s) 4.55 4.40 4.70 4.59 4.44 4.74

SAS PROC NLMIXED with adaptive Gaussian quadrature and built-in gamma functions

NONMEM Laplace approximation and Nemes’ approximation to gamma function
a Based on standard error provided in NONMEM
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Fig. 1 Goodness of fit plots for the model of Alzheimer’s disease

assessment scale (ADAS-cog). The orange line represents a LOW-

ESS smoother. In the residual plots, the ordinate value of zero is

presented (solid horizontal line). In the plots of observed versus

population and individual predictions, the solid line represents the line

of identity, and the dashed line represents the linear regression line

(Color figure online)
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applying the rescaling method to the data [6, 9]. The bias

and RRMSE for each parameter were almost identical after

rescaling the data and excluding the boundary data (data

not shown), indicating that the impact of the small per-

centage of boundary data on the simulation-reestimation

exercise was minimal. Further investigations may be nee-

ded in the future if large amount of data are located at the

boundaries.

Conclusions

It is possible to implement mixed-effects beta regression in

NONMEM with Nemes’ approximation to the gamma

function. The simulation-reestimation exercise demon-

strated that compared to SAS, NONMEM provided similar

bias and RRMSE (with only a relatively small difference)

for estimating both fixed- and random-effect parameters of

the mixed effects beta regression model. This is consistent

with previous findings which suggested that the Laplace

and adaptive Gaussian approximations give the best mix of

efficiency and accuracy [26]. In addition, when being

applied to implementation of mixed-effects beta regression,

Nemes’ approximation reasonably matched the SAS built-in

gamma functions with less than approximately 3 % dif-

ference in bias and RRMSE in our present simulations.
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Appendix

A sample NONMEM code for the mixed effects beta

regression model for the ADNI data is presented.

Code Comments

$PROB beta regression ; Data specification

$INPUT

$DATA ADNI.csv

$PRED ; Mean model

B0 = THETA(1) ? ETA(1)

B1 = THETA(2) ? ETA(2)

; Define parameters for
baseline and slope

LINP = B0 ? B1 * TIME

MU = EXP(LINP)/
(1 ? EXP(LINP))

; Linear predictor on logit scale

; Conditional mean by anti-logit
transforming the linear
predictor

LTAU = THETA(3)

TAU = EXP(LTAU)

; precision parameter

; specify the log likelihood
based on the density function
for beta distribution (Eq. 2)

X1 = TAU

X2 = MU * TAU

X3 = (1-MU) * TAU

Beta Regression (NONMEM)

Time (yr)

A
D

A
S

-c
og

 S
co

re

20

40

60

0.0 0.5 1.0 1.5 2.0

Fig. 2 Visual predictive check for the model of Alzheimer’s disease

assessment scale (ADAS-cog). The upper, middle, and lower profiles

indicated by the open circles represent the 95th, 50th, and 5th

percentiles of the observed data. The upper, middle, and lower curves

indicated by the lines are the median model based prediction for the

95th, 50th, and 5th percentiles and these predictions account for

missing data. The shaded areas are the 90 % prediction intervals of

the corresponding percentiles of the simulations based on the model
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Appendix continued

Code Comments

LG1 = 0.5 * (LOG(2 *
3.1415) - LOG(X1)) ? X1 *
(LOG(X1) - 1) ? (5/4) * X1
* (LOG (1 ? (1/(15 * X1 *
2))))

LG2 = 0.5 * (LOG(2 *
3.1415) - LOG(X2)) ? X2 *
(LOG(X2) - 1) ? (5/4) * X2
* (LOG (1 ? (1/(15 * X2 *
2))))

LG3 = 0.5 * (LOG(2 *
3.1415) - LOG(X3)) ? X3 *
(LOG(X3) - 1) ? (5/4) * X3
* (LOG (1 ? (1/(15 * X3 *
2))))

; Approximation of the
log(gamma) function (Eq. 4)

; The first part of the log
likelihood, 0.5 * (LOG(2 *
3.1415), can be omitted if
computation of full likelihood
is not required.

; Log Likelihood of the beta
distribution (Eq. 2)

LOGL = LG1 - LG2 -

LG3 ? (MU * TAU-1) *
LOG(DV) ? ((1-MU) *
TAU-1) * LOG(1-DV)

Y = -2 * LOGL

SOR = (DV - MU)/
SQRT(MU * (1-MU)/
(1 ? TAU))

; Pearson residuals
(standardized ordinary
residuals)

$THETA ; specify initial values

$OMEGA

$EST MAX = 9999
PRINT = 5
METHOD = COND -

2LOGLIK LAPLACIAN
NOABORT

$COV PRINT = E
MATRIX = R

$TABLE

; estimation step
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